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Under the present setup for RHIC operation, four batches of six

bunches of gold ions (Au77+) are injected into the AGS at constant

magnetic �eld on the injection porch of each AGS magnetic cycle. The

bunches are injected into stationary RF buckets at harmonic 24 with the

RF voltage adjusted to match the buckets to the bunches as closely as

possible. (Due to the large energy spread of the ions emerging from the

stripping foil in the BTA line, the required voltage is close to the

maximum available|some 320 kV.) Shortly after the four batches have

been injected, the RF voltage is slowly reduced to zero, adiabatically

debunching the beam. This is done because the 24 bunches need to be

merged into 4 bunches to meet the luminosity requirements of RHIC.

Debunching adiabatically prevents �lamentation of the longitudinal

emittance (i.e. preserves the \gross emittance") and reduces the energy

spread of the beam.

Once debunched and while still on the injection porch, the beam is

adiabatically rebunched at harmonic 4. This is done with a single RF

cavity, the so-called KEK cavity, which is the only cavity that can operate

at the required low frequency. The other AGS cavities operate at harmonic

12 and are used to accelerate the beam from injection to full energy. Once

the beam has been bunched at harmonic 4, the amplitude of this harmonic

is slowly decreased to zero and at the same time harmonic 8 is brought on

(in the KEK cavity) with every other harmonic 8 bucket centered on a

harmonic 4 bucket. As the harmonic 8 and 4 amplitudes are respectively

increased and decreased adiabatically, the bunch widths are reduced and

the four bunches are captured into every other harmonic 8 bucket. This

makes it possible for each bunch to �t inside a harmonic 12 bucket when

these are brought on. Finally, bringing on harmonic 12, one ends up with

beam captured in every third of 12 stationary buckets on the injection

porch.
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This capture scheme was conceived by J. M. Brennan and was successfully

implemented by the RF group for the FY2000 RHIC Run. In this note we

examine the scheme by numerical simulation.

1 Turn-by-Turn Equations of Motion

Calculation of the evolution of a given particle distribution during capture

into stationary buckets at constant magnetic �eld requires a suitable set of

turn-by-turn equations for the longitudinal motion. These are derived here

following the treatment of MacLachlan [1].

1.1 Synchronous Parameters

Let 2�R and � be the circumference and radius-of-curvature of the design

orbit in a given ring, and let B and 2�Rs be the magnetic �eld and orbit

circumference for the synchronous particle. We assume that B and Rs are

given and calculate the other synchronous particle parameters in terms of

these. Thus the radius-of-curvature is

�s = �(Rs=R)
1=�

; � =
1

2t

(1)

and the momentum and energy are

cps = eQB�s; Es =
q
(cps)2 +m2c4: (2)

Here � is the \momentum compaction" factor, t is the transition gamma,

e is the proton charge, and eQ and m are the charge and mass of the

particle. The synchronous �,  and angular velocity are

�s = cps=Es; s = Es=(mc
2); !s = c�s=Rs: (3)

We also de�ne the phase slip factor

�s = ��
1

2s

=
1


2
t

�

1

2s

: (4)

1.2 Time Equation

We consider a ring with a single RF gap. Let T s
n and Tn be respectively

the times at which the synchronous and asynchronous particles make their
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nth pass through the gap. The synchronous particle experiences no

acceleration in the gap and revolves around the ring with constant angular

velocity !s. Thus

T
s

n+1 = T
s

n + Ts; Ts = 2�=!s; (5)

and taking T s
1 = 0, it follows that

T
s

n+1 = nTs: (6)

Similarly, for the asynchronous particle we have

Tn+1 = Tn + 2�=!n (7)

where !n is the angular velocity just after the nth pass through the gap.

De�ning

tn = Tn � T
s

n; tn+1 = Tn+1 � T
s

n+1 (8)

we then have

tn+1 = tn + 2�

�
1

!n
�

1

!s

�
= tn +

�
!s � !n

!n

�
Ts: (9)

1.3 Energy Equation

Now let En be the energy of the asynchronous particle just after its nth

pass through the gap. Then we have

En+1 = En + eQV (Tn+1); (10)

where V (T ) is the voltage across the the gap at time T . Since the

synchronous particle undergoes no acceleration we must have

V (T s

n) = 0 (11)

for all n. We shall also assume that

V (T + Ts=h) = V (T ) (12)

where h, the harmonic number, is a positive integer. In terms of En, the

other asynchronous parameters are

cpn =
q
E2
n �m2c4; �n = cpn=En (13)

and

�n =
cpn

eQB
; Rn = R(�n=�)

�
; !n = c�n=Rn: (14)
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De�ning

en = En �Es; en+1 = En+1 �Es (15)

and using

Tn+1 = tn+1 + T
s

n+1 = tn+1 + nTs (16)

and

V (tn+1 + nTs) = V (tn+1); (17)

we can write (10) as

en+1 = en + eQV (tn+1): (18)

This, together with

tn+1 = tn +

�
!s � !n

!n

�
Ts (19)

gives the turn-by-turn longitudinal motion of the asynchronous particle.

1.4 Sympletic Map

The Jacobian matrix elements for the map from (tn, en) to (tn+1, en+1) are

@tn+1

@tn
= 1;

@tn+1

@en
= 2�

@(1=!n)

@en
(20)

@en+1

@tn
= eQV

0
;

@en+1

@en
= 1 + 2�eQV 0

@(1=!n)

@en
(21)

where V 0 is the derivative of V with respect to T at time Tn+1. Thus we

have �
@tn+1

@tn

��
@en+1

@en

�
�

�
@tn+1

@en

��
@en+1

@tn

�
= 1 (22)

and the map is symplectic. If tn = 0 and en = 0, then it follows from (18)

and (19) that tn+1 = 0 and en+1 = 0. Thus if t1 = 0 and e1 = 0 it follows

by induction that tn = 0 and en = 0 for all n, and we see that the point

(t1, e1) = (0, 0) is a �xed point.

1.5 Approximate Time Equation

Now
!s

!n
= 1�

�
!n � !s

!s

�
+

�
!n � !s

!s

�2
�

�
!n � !s

!s

�3
+ � � � (23)
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and, to �rst order in pn � ps and En �Es,�
!n � !s

!s

�
= ��s

�
pn � ps

ps

�
= ��s

�
En �Es

�2sEs

�
: (24)

Thus, to �rst order we have

!s

!n
= 1�

�
!n � !s

!s

�
= 1 + �s

�
En �Es

�2sEs

�
= 1 +

�
�s

�2sEs

�
en (25)

and equation (19) becomes

tn+1 = tn + Ts

�
�s

�2sEs

�
en: (26)

This, together with

en+1 = en + eQV (tn+1) (27)

again produces a symplectic map from (tn, en) to (tn+1, en+1).

1.6 Phase Equation

Let us now introduce new variables

�n = h!stn; Wn =
en

h!s
: (28)

Here �n is the phase that corresponds to time tn, and Wn is de�ned so

that the transformation from (tn, en) to (�n, Wn) is symplectic. In terms

of these variables equations (26) and (27) become

�n+1 = �n + Ts

 
h
2
!
2
s�s

�2sEs

!
Wn (29)

and

Wn+1 =Wn + Ts

�
eQ

2�h

�
V

�
�n+1

h!s

�
: (30)

De�ning

a =

 
h
2
!
2
s�s

�2sEs

!
(31)

and

F (�n+1) =

�
eQ

2�h

�
V

�
�n+1

h!s

�
(32)
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we then have

�n+1 = �n + aTsWn (33)

and

Wn+1 =Wn + TsF (�n+1): (34)

These equations again generate a sympletic map. Note that since V (0) = 0

and V (T + Ts=h) = V (Ts) we have

F (0) = 0; F (�+ 2�) = F (�): (35)

Since we are interested in the momentum deviation pn � ps, it is useful to

have an expression for this in terms of Wn. Using (24) and (28) we �nd

�
pn � ps

ps

�
=

�
En �Es

�2sEs

�
=

�
h!s

�2sEs

�
Wn: (36)

2 Hamiltonian Equations of Motion

The turn-by-turn motion given by equations (33) and (34) can be

approximated by the motion that follows from a Hamiltonian. The

Hamiltonian in this case is

H(�;W ) =
1

2
aW

2 + U(�) (37)

and the equations of motion are

_� =
d�

dt
=
@H

@W
= aW; (38)

_W =
dW

dt
= �

@H

@�
= �

@U

@�
= F (�): (39)

First-order symplectic integration [2] of these equations over time Ts yields

the symplectic map given by (33) and (34).

2.1 Constants of the Motion

If U(�) has no explicit dependence on the time, then H(�;W ) is constant

for the motion generated by equations (38) and (39). However, it is only

approximately constant for the motion generated by (33) and (34). As
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shown in Ref. [2], one can construct approximate constants order-by-order

in Ts. This is done explicitly to order T 2
s in the Appendix. Here one �nds

H(�n+1;Wn+1) = H(�n;Wn) +O(T 2
s ) (40)

where O(T 2
s ) are terms of order T 2

s and higher. Proceeding further, one

�nds

G(�n+1;Wn+1) = G(�n;Wn) +O(T 3
s ) (41)

where

G(�;W ) = H(�;W )�
1

2
aTsWF (�) (42)

and O(T 3
s ) are terms of order T 3

s and higher.

2.2 Stable and Unstable Fixed Points

The �xed points, (�f , Wf ), of the motion satisfy the equations

0 =
@H

@�
=
@U

@�
= �F (�); 0 =

@H

@W
= aW: (43)

Thus

F (�f ) = 0; Wf = 0: (44)

To determine whether the motion near a �xed point is stable or unstable

we must examine the second derivative of U with respect to �. Let U�� be

the value of the second derivative at the �xed point. Then, when a < 0

(below transition), the motion near the �xed point will be stable if U�� < 0

and unstable if U�� > 0. Similarly when a > 0 (above transition), the

motion near the �xed point will be stable if U�� > 0 and unstable if

U�� < 0.

2.3 The Separatrix

Let Hu be the value of H at an unstable �xed point: � = �u, W = 0. Then

Hu = U(�u) (45)

and the equation

H(�;W ) = Hu (46)

de�nes the separatrix. Solving this equation for W 2(�) we obtain

W
2(�) =

2

a
fU(�u)� U(�)g : (47)
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We also have
dW

2

d�
= �

2

a

@U

@�
;

d
2
W

2

d2�
= �

2

a

@
2
U

@�2
(48)

from which it follows that W 2(�) reaches at local maximum at each stable

�f . The area around a stable �xed point and bounded by the separatrix is

an RF bucket. The height, Wb, of the bucket is given by

W
2
b =

2

a
fU(�u)� U(�s)g (49)

where �s is the stable �f .

3 Capture Simulation

Let us now use equations of Sections 1 and 2 to simulate the capture

process on the injection porch in the AGS.

3.1 AGS and Gold Parameters

Gold ions are injected into the AGS with Q = 77, mc2 = 183:434144 GeV,

and magnetic rigidity B�s = 3:721589 Tm. We shall take

�s = � = 85:387 meters; Rs = R = 4Rr=19; t = 8:5 (50)

where Rr = 3833:845=(2�) meters is the nominal RHIC radius. This gives

R = 4Rr=19 = 128:4580 meters, which is approximately 5 mm larger than

the nominal AGS radius reported by Bleser [3]. The momentum and

energy of the synchronous gold ion are

cps = eQB�s; Es =
q
(cps)2 +m2c4 (51)

and �,  and the angular velocity are

�s = cps=Es; s = Es=(mc
2); !s = c�s=Rs: (52)

Putting in numbers we get B = 435:894 Gauss, cps=n = 436:087 MeV,

Es=n = 1028:20 MeV, �s = 0:424128, Ts = 2�=!s = 6:34780 �s, and

s = 1:10424. Here n = 197 is the number of nucleons in a gold nucleus.

Since s < t, injection occurs below transition and we have �s < 0 and

a < 0.
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3.2 Initial Particle Distribution

The initial particle distribution for the simulation is that of completely

debunched beam. This is the situation on the injection porch after four

batches of six bunches have been injected (into 24 stationary buckets) and

debunched adiabatically. We assume a uniform distribution and consider

an 80-by-80 array of points (particles) which cover the region

�� � � � �; �WI �W �WI (53)

occupied by one fourth of the beam. Here

WI = EI=(h!s) = EITs=(2�h) (54)

where 2EI is the energy width of the debunched beam and h = 4. The

area of the region is

� = (2�)(2WI ) = 2EITs=h = EITs=2: (55)

This is the total longitudinal emittance of 6 of the original 24 bunches. We

shall take � = 60 eV-s which amounts to 60=197 = 0:305 eV-s per nucleon.

Each of the 6400 particles in the 80-by-80 array will be tracked using the

turn-by-turn equations of Section 1. The equations of Section 2 give the

parameters of the RF buckets which contain the particles.

3.3 Capture Program

For capture with harmonics 4, 8, and 12 on the AGS injection porch, we

take 4 to be the fundamental harmonic, and 8 and 12 to be the second and

third harmonics of the fundamental. Thus we put h = 4 in the

turn-by-turn equations of Section 1 and we put

F (�) = A1 sin�+A2 sin 2�+A3 sin 3� (56)

for F (�) in the equations of Sections 1 and 2. Here

Ai =

�
eQVi

2�h

�
(57)

and V1, V2, V3 are respectively the RF voltages for harmonics 4, 8, and 12.

These are varied slowly (adiabatically) during the capture process.
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3.3.1 Harmonic 4 Excitation

The capture process begins with the excitation of the KEK cavity at

harmonic 4. A2 and A3 are zero and A1 is brought up slowly from zero to

AK over time T1. For 0 � T � T1, we have

F (�) = A1 sin�; U(�) = A1 cos� (58)

where

A1(T ) = AK(T=T1)
2
: (59)

Here the amplitude increases quadratically with time as is done in practice

[4]. The unstable phases for the bucket centered on � = 0 are � = ��, and

the bucket separatrix is given by

W
2(�) =

2

a
fU(�)� U(�)g = �

2A1

a
f1 + cos�g : (60)

Using the identity 1 + cos� = 2 cos2(�=2), this becomes

W
2(�) = �

4A1

a
cos2(�=2): (61)

The bucket height, W1, is given by

W
2
1 =

2

a
fU(�)� U(0)g = �

4A1

a
=

 
�2eQV1�

2
sEs

�h3!2s�s

!
(62)

and the (single) bucket area is

B1 = 2

Z
�

��

W (�) d� = 2W1

Z
�

��

cos(�=2) d� = 8W1: (63)

Equating the unbunched beam emittance (� = 60 eV-s) with B1, and

solving for V1, we obtain the minimum voltage required to capture the

beam. Thus

�
2 = B

2
1 = 64W 2

1 =

 
�128eQV1�

2
sEs

�h3!2s�s

!
(64)

and

eV1 =

 
��

2
�h

3
!
2
s�s

128Q�2sEs

!
= 1:6 keV: (65)

Of course, the actual voltage used will be much larger so that the captured

beam ends up occupying the central region of a much larger bucket. The

maximum voltage available in the KEK cavity is VK = 20 kV. Setting

V1 = VK gives a maximum harmonic 4 bucket area B1 = 213 eV-s (which

amounts to 213=197 = 1:08 eV-s per nucleon).
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3.3.2 Harmonic 4 and 8 Excitation

Capture continues with KEK cavity excitation at both harmonics 4 and 8.

A1 is slowly reduced to zero as A2 is slowly increased from zero to AK over

time T2 � T1. For T1 � T � T2, we have

F (�) = A1 sin�+A2 sin 2� = fA1 + 2A2 cos�g sin�; (66)

and

U(�) = A1 cos�+
1

2
A2 fcos 2�+ 1g = A1 cos�+A2 cos

2
� (67)

where

A1(T ) = AK

�
T2 � T

T2 � T1

�
; A2(T ) = AK

�
T � T1

T2 � T1

�
: (68)

Here the harmonic 4 amplitude decreases linearly from AK at time T1 to

zero at time T2. Similarly, the harmonic 8 amplitude increases linearly

from zero at time T1 to AK at time T2. This is approximately what is done

in practice [4]. Initially, 2A2 < A1 and the unstable phases for the bucket

centered on � = 0 are �u = ��. However, as soon as 2A2 becomes greater

than A1, these phases become stable and the unstable ones are given by

A1 + 2A2 cos�u = 0: (69)

These move toward �u = ��=2 as A1 goes to zero. At time T2, we have

A1 = 0, A2 = AK , and only harmonic 8 is excited. The bucket separatrix is

then given by

W
2(�) =

2

a
fU(�=2) � U(�)g = �

2A2

a
cos2 � (70)

and the bucket height, W2, is given by

W
2
2 =

2

a
fU(�=2) � U(0)g = �

2A2

a
=

 
�eQV2�

2
sEs

�h3!2s�s

!
: (71)

Thus we can write

W
2(�) =W

2
2 cos

2
� (72)

and the (single) bucket area is

B2 = 2

Z
�=2

��=2

W (�) d� = 2W2

Z
�=2

��=2

cos�d� = 4W2: (73)

Setting V2 = VK = 20 kV gives B2 = 75 eV-s, the largest harmonic 8

bucket area available with the KEK cavity; this is not much larger than

the 60 eV-s emittance we have assumed.
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3.3.3 Harmonic 8 and 12 Excitation

Once the beam has been captured into every other bucket at harmonic 8,

capture into every third bucket at harmonic 12 begins. A2 is slowly

reduced to zero as A3 is slowly increased from zero to A over time T3 � T2.

For T2 � T � T3, we have

F (�) = A2 sin 2�+A3 sin 3�

= 2A2 cos� sin�+A3

n
3 sin�� 4 sin3 �

o
=

n
2A2 cos�+A3(4 cos

2
�� 1)

o
sin� (74)

and

U(�) =
1

2
A2 fcos 2�+ 1g+

1

3
A3 cos 3�

= A2 cos
2
�+

1

3
A3

n
4 cos3 �� 3 cos �

o
(75)

where

A2(T ) = AK

�
T3 � T

T3 � T2

�
; A3(T ) = A

�
T � T2

T3 � T2

�
: (76)

Here the harmonic 8 amplitude decreases linearly from AK at time T2 to

zero at time T3. Similarly, the harmonic 12 amplitude increases linearly

from zero at time T2 to A at time T3. This, again, is approximately what

is done in practice [4]. Solving

2A2 cos�+A3(4 cos
2
�� 1) = 0 (77)

we �nd that for A3 > 0, the unstable phases closest to � = 0 are given by

cos�u =
�A2 +

q
A2
2 + 4A2

3

4A3

; (78)

and for A3 > 2A2=3, the stable phases closest to � = 0 are given by

cos�s =
�A2 �

q
A
2
2 + 4A2

3

4A3

: (79)

Thus, as A2 goes to zero, the unstable phases move from ��=2 to ��=3,

and, as soon as A3 > 2A2=3, the stable phases begin to move from �� to
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�2�=3. At time T3, we have A2 = 0, A3 = A, and only harmonic 12 is

excited. The bucket separatrix is then given by

W
2(�) =

2

a
fU(�=3) � U(�)g = �

2A3

3a
f1 + cos 3�g (80)

and the bucket height, W3, is given by

W
2
3 =

2

a
fU(�=3) � U(0)g = �

4A3

3a
=

 
�2eQV3�

2
sEs

3�h3!2s�s

!
: (81)

Thus we can write

W
2( =3) =

1

2
W

2
3 f1 + cos g =W

2
3 cos

2( =2) (82)

and the (single) bucket area is

B3 = 2

Z
�=3

��=3

W (�) d� =
2

3

Z
�

��

W ( =3) d =
8W3

3
: (83)

Setting B3 = � = 60 eV-s and solving (81) for V3, we �nd

eV3 =

 
�27�2�h3!2s�s

128Q�2sEs

!
= 43 keV: (84)

This is the minimum harmonic 12 voltage required to contain the 60 eV-s

emittance we have assumed.

4 Results

The simulation was run with T1 = 100 ms, T2 = 150 ms, T3 = 200 ms, and

with

AK =

�
eQVK

2�h

�
; A =

�
eQVA

2�h

�
(85)

where VK = 20 kV and VA = 60 kV.

1. Figure 1 shows the beam distribution in the harmonic 4 bucket at

time T1. Here the rectangle outlines the region of the initial 60 eV-s

uniform distribution. The harmonic 4 voltage at time T1 is

V1 = VK = 20 kV which gives bucket area B1 = 213 eV-s. This is the

largest harmonic 4 bucket area available.
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Figure 1: Capture into Harmonic 4 Bucket

2. Figure 2 shows the beam distribution in the harmonic 8 bucket at

time T2. (The original harmonic 4 bucket at time T1 is also shown.)

Here the harmonic 8 voltage is V2 = VK = 20 kV which gives bucket

area B2 = 75 eV-s. This is the largest harmonic 8 bucket area

available and is barely large enough to contain the 60 eV-s beam

emittance.

3. Figure 3 shows the beam distribution in the harmonic 12 bucket at

time T3. Here the harmonic 12 voltage is V3 = VA = 60 kV which

gives bucket area B3 = 71 eV-s. The bucket height is equal to that of

the original harmonic 4 bucket. Although the bucket is large enough

to contain the 60 eV-s emittance, a few particles have managed to

leak into the adjacent buckets.

4. Figures 4, 5, 6 show the momentum distributions in the harmonic 4,

8, 12 buckets at times T1, T2, T3 respectively. Here the time and

fractional momentum deviation dp=ps are given by equations (28)

and (36).
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Figure 2: Capture into Harmonic 8 Bucket
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Figure 3: Capture into Harmonic 12 Bucket
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Figure 4: Momentum Distribution in Harmonic 4 Bucket
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Figure 5: Momentum Distribution in Harmonic 8 Bucket
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Figure 6: Momentum Distribution in Harmonic 12 Bucket

The \bottleneck" in the capture process is the harmonic 8 bucket area.

Because this area is barely large enough to contain the 60 eV-s emittance,

some particles can end up close to the unstable �xed points as the

harmonic 8 voltage is decreased and the harmonic 12 voltage is increased.

These presumably are the particles that have leaked into the adjacent

harmonic 12 buckets in Figure 3. Increasing the maximum harmonic 12

voltage VA from 60 to 120 kV and increasing the capture time T3 from 200

to 250 ms, all but eliminates this leakage.

The simulation was also run with shorter capture times. With T1 = 50 ms,

T2 = 65 ms, and T3 = 80 ms, one sees a little more leakage into the

adjacent harmonic 12 buckets as shown in Figure 7. These capture times

are comparable to those used in practice [4].
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Figure 7: Harmonic 12 Buckets with Shorter Capture Time

5 Appendix

Consider the general Hamiltonian

H(�;W ) = T (W ) + U(�): (86)

We then have the equations of motion

d�

dt
=
@H

@W
=

dT

dW
= T

0 = g(W ); (87)

dW

dt
= �

@H

@�
= �

dU

d�
= �U

0 = f(�): (88)

The motion may be approximated by the symplectic map

�1 = �+ �g(W ); W1 =W + �f(�1): (89)

We wish to �nd an approximate constant of the motion generated by this

map. This can be done order-by-order in � as discussed in Ref. [2]. Let

G(�;W ) = H0(�;W ) + �H1(�;W ) (90)
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where H0 and H1 are functions to be determined. To �rst order in � we

have

H0(�1;W1) = H0(�;W ) + �g(W )
@H0

@�
+ �f(�)

@H0

@W
; (91)

�H1(�1;W1) = �H1(�;W ); (92)

and

G(�1;W1) = G(�;W ) + �g(W )
@H0

@�
+ �f(�)

@H0

@W
: (93)

If we choose H0 such that

@H0

@�
= �f(�);

@H0

@W
= g(W ) (94)

then we will have

G(�1;W1) = G(�;W ) (95)

to �rst order in � . Thus we take

H0 = T (W ) + U(�) = H: (96)

Let us now calculate G(�1;W1) to second order in � . We have

G(�1;W1) = T (W1) + U(�1) + �H1(�1;W1) (97)

where

T (W1) = T (W ) + T
0(W )(W1 �W ) +

1

2
T
00(W1 �W )2; (98)

U(�1) = U(�) + U
0(�)(�1 � �) +

1

2
U
00(�1 � �)2; (99)

T
0 = g(W ); T

00(W ) = g
0(W ); U

0 = �f(�); U
00(�) = �f

0(�) (100)

and

�H1(�1;W1) = �H1(�;W ) + �(�1 � �)
@H1

@�
+ �(W1 �W )

@H1

@W
: (101)

Now

W1 �W = �f(�1); �1 � � = �g(W ) (102)
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where

f(�1) = f(�) + f
0(�)(�1 � �) = f(�) + f

0(�)�g(W ): (103)

Thus, to second order in � , we have

W1 �W = �f(�) + �
2
f
0(�)g(W ) (104)

(W1 �W )2 = �
2
f
2(�); (�1 � �)2 = �

2
g
2(W ): (105)

Collecting terms we have

T (W1) = T (W ) + g(W )f�f(�) + �
2
f
0(�)g(W )g +

1

2
g
0(W )�2f2(�); (106)

U(�1) = U(�)� f(�)�g(W ) �
1

2
f
0(�)�2g2(W ); (107)

and

T (W1)+U(�1) = T (W )+U(�)+
1

2
�
2
f
0(�)g2(W )+

1

2
�
2
g
0(W )f2(�): (108)

We also have

�H1(�1;W1) = �H1(�;W ) + �
2
g(W )

@H1

@�
+ �

2
f(�)

@H1

@W
: (109)

Using (108) and (109) in (97), we then have

G(�1;W1) = G(�;W ) +
1

2
�
2
f
0(�)g2(W ) +

1

2
�
2
g
0(W )f2(�)

+ �
2
g(W )

@H1

@�
+ �

2
f(�)

@H1

@W
: (110)

Thus, choosing H1 such that

@H1

@�
= �

1

2
f
0(�)g(W );

@H1

@W
= �

1

2
f(�)g0(W ) (111)

we see that G(�1;W1) = G(�;W ) to second order in � . Taking

H1 = �

1

2
f(�)g(W ) (112)

gives the desired result.
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